Back to Code Snippets
Octavian Zarzu
@octavian
Execute this SQL
-- create macro CREATE OR REPLACE MACRO udf_products_in_year (v_year, v_category) AS TABLE SELECT name, category, created_at FROM products WHERE category = v_category AND year(created_at) = v_year; -- select using the macro as you would do from a table SELECT * FROM udf_products_in_year (2020, 'Home and Garden'); | Copper Light | Home and Garden | 2020-04-05 00:00:00.000 | | Pink Armchair | Home and Garden | 2020-06-23 00:00:00.000 | -- input ddl and data CREATE TABLE products ( name varchar, category varchar, created_at timestamp ); INSERT INTO products VALUES ('Cream Sofa', 'Home and Garden', '2019-03-14'), ('Copper Light', 'Home and Garden', '2020-04-05'), ('Pink Armchair', 'Home and Garden', '2020-06-23');
Copy code
Octavian Zarzu
Copy code
Expand
Share link
Execute this SQL
/* removes duplicate rows at the order_id level */ SELECT * FROM orders QUALIFY row_number() over (partition by order_id order by created_at) = 1
Copy code
Octavian Zarzu
Copy code
Expand
Share link
Filter column names using a patternSQL
Editor's note: DuckDB aims to make SQL even easier, while supporting standards whenever possible. When you have extremely wide tables, it's often helpful to return only columns matching a regex, and COLUMNS() does exactly that. With the EXCLUDE() and REPLACE() functions you get even more simplicity.
Execute this SQL
-- select only the column names that start with the dim_ SELECT COLUMNS('^dim_') FROM fact_table;
Copy code
Octavian Zarzu
Expand
Share link
Execute this SQL
-- listing files FROM glob('dataset/*'); -- reading from files FROM 'dataset/*.parquet' LIMIT 100; -- reading parquet files metadata (min_value, max_value, null_count for each field in each file) FROM parquet_metadata('dataset/*.parquet'); -- convert files or export tables to parquet COPY (FROM tbl) TO 'file.parquet' (FORMAT 'parquet'); COPY 'data.csv' TO 'data.paruqet' (FORMAT 'parquet');
Copy code
Octavian Zarzu
Copy code
Expand
Share link