Back to Code Snippets


Kernel Density Estimation - Epanechnikov KernelSQL

KDE estimates the probability distribution of a random variable. The bandwidth parameter controls the width of the kernel, influencing how smooth or detailed the estimated density curve is. A smaller bandwidth results in a more detailed estimation, while a larger bandwidth produces a smoother curve.

Execute this SQL

CREATE OR REPLACE MACRO KDE_EPANECH(data, varnum, bandwidth, bin_count := 30) AS TABLE 
WITH hist AS (
	FROM histogram_values(data, varnum, bin_count := bin_count)
)
SELECT hist.bin, k.kernel_value
FROM hist, LATERAL (
    SELECT 100 * AVG(
    IF(abs(hist.bin - varnum) / bandwidth  < 1,
    0.75 * (1 - POW(abs(hist.bin - varnum) / bandwidth, 2)) / bandwidth,
    0)) AS kernel_value
	FROM query_table(data)
) k
ORDER BY hist.bin ;

-- Following David Scott's rule, here is an estimate for bandwidth:
CREATE OR REPLACE MACRO KDE_BANDWIDTH(data, varnum) AS (
	FROM query_table(data)
	SELECT 1.06 * stddev(varnum) * pow(count(*), -1/5)
);

-- Usage
SET VARIABLE bandwidth = (SELECT KDE_BANDWIDTH(mydata, myvarnum)) ;

FROM KDE_EPANECH(mydata, myvarnum, getvariable('bandwidth')) ;

-- Inspiration and illustration: https://observablehq.com/@d3/kernel-density-estimation

Copy code

Éric Mauvière

Expand

Share link